Coarse structures on groups
نویسندگان
چکیده
منابع مشابه
Einstein structures on four-dimensional nutral Lie groups
When Einstein was thinking about the theory of general relativity based on the elimination of especial relativity constraints (especially the geometric relationship of space and time), he understood the first limitation of especial relativity is ignoring changes over time. Because in especial relativity, only the curvature of the space was considered. Therefore, tensor calculations should be to...
متن کاملCoarse Median Spaces and Groups
We introduce the notion of a coarse median on a metric space. This satisfies the axioms of a median algebra up to bounded distance. The existence of such a median on a geodesic space is quasi-isometry invariant, and so applies to finitely generated groups via their Cayley graphs. We show that asymptotic cones of such spaces are topological median algebras. We define a notion of rank for a coars...
متن کاملGroups with no coarse embeddings into hyperbolic groups
We introduce an obstruction to the existence of a coarse embedding of a given group or space into a hyperbolic group, or more generally into a hyperbolic graph of bounded degree. The condition we consider is “admitting exponentially many fat bigons”, and it is preserved by a coarse embedding between graphs with bounded degree. Groups with exponential growth and linear divergence (such as direct...
متن کاملOn the Coarse Classification of Tight Contact Structures
We present a sketch of the proof of the following theorems: (1) Every 3-manifold has only finitely many homotopy classes of 2-plane fields which carry tight contact structures. (2) Every closed atoroidal 3-manifold carries finitely many isotopy classes of tight contact structures. In this article we explain how to normalize tight contact structures with respect to a fixed triangulation. Using t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2012
ISSN: 0166-8641
DOI: 10.1016/j.topol.2012.06.009